Documentation

AlgebraInLean.Chapter03.Sheet03

Equations
Instances For
    noncomputable def AlgebraInLean.order {M : Type u_1} [AlgebraInLean.Monoid M] (x : M) :
    Equations
    Instances For
      theorem AlgebraInLean.mpow_order_zero {M : Type u_1} [AlgebraInLean.Monoid M] (x : M) (n : โ„•) (hโ‚€ : AlgebraInLean.order x = 0) :
      AlgebraInLean.mpow x n = AlgebraInLean.๐•– โ†’ n = 0

      If xโฟ = e โ†’ n = 0

      theorem AlgebraInLean.mpow_order {M : Type u_1} [AlgebraInLean.Monoid M] (x : M) :
      AlgebraInLean.mpow x (AlgebraInLean.order x) = AlgebraInLean.๐•–

      If n is the order of x, then xโฟ = e

      Let m be the order x. Write m = nq + r with 0 โ‰ค r < m. Then, xสณ = xโฟ

      Let n be the order of x. xแต = e โ†” n | m

      theorem AlgebraInLean.order_nonzero_iff {M : Type u_1} [AlgebraInLean.Monoid M] (x : M) :
      AlgebraInLean.order x โ‰  0 โ†” โˆƒ (n : โ„•), n โ‰  0 โˆง AlgebraInLean.mpow x n = AlgebraInLean.๐•–

      The order of x is nonzero if and only if there exists an n : โ„• such that xโฟ = e

      theorem AlgebraInLean.order_id {M : Type u_1} [AlgebraInLean.Monoid M] :
      AlgebraInLean.order AlgebraInLean.๐•– = 1

      The order of the identity element, ๐•–, in any monoid is 1.

      Let m be the order of x and let n : โ„• with n โ‰  0. If m โ‰  0, then the order of xโฟ is nonzero

      theorem AlgebraInLean.inverse_of_nonzero_order {M : Type u_1} [AlgebraInLean.Monoid M] (x : M) (h : AlgebraInLean.order x โ‰  0) :
      โˆƒ (y : M), AlgebraInLean.ฮผ x y = AlgebraInLean.๐•– โˆง AlgebraInLean.ฮผ y x = AlgebraInLean.๐•–

      Suppose m, n < order x. If xแต = xโฟ, then m = n

      Let r โ‰  0 be the order of x. If xแต = xโฟ, then m is congruent to n (mod r)

      theorem AlgebraInLean.gpow_order {G : Type u_1} [AlgebraInLean.Group G] (x : G) :
      AlgebraInLean.gpow x โ†‘(AlgebraInLean.order x) = AlgebraInLean.๐•–

      Let n be the order x. Then, xโฟ = ๐•–

      theorem AlgebraInLean.gpow_id {G : Type u_1} [AlgebraInLean.Group G] (n : โ„ค) :
      AlgebraInLean.gpow AlgebraInLean.๐•– n = AlgebraInLean.๐•–
      theorem AlgebraInLean.gpow_order_zero {G : Type u_1} [AlgebraInLean.Group G] (x : G) {n : โ„ค} (hโ‚€ : AlgebraInLean.order x = 0) :
      AlgebraInLean.gpow x n = AlgebraInLean.๐•– โ†’ n = 0

      Suppose the order of x is 0. Then if xโฟ = ๐•–, n = 0

      Let m be the order x. Write m = nq + r with 0 โ‰ค r < m. Then, xสณ = xโฟ

      Suppose the order of x is 0. Then xแต = xโฟ โ†’ m = n

      theorem AlgebraInLean.emod_has_nat {m : โ„•} (n : โ„ค) (hm : 0 < m) :
      โˆƒ (n' : โ„•), n % โ†‘m = โ†‘n' % โ†‘m

      The capstone theorem of gpow: let r = order x. Then if two integers m and n satisfy xแต = xโฟ, then m โ‰ก n [MOD order x]. If r = 0, then m = n.