Documentation

AlgebraInLean.Chapter02.Sheet01

theorem AlgebraInLean.mul_left_eq {G : Type u_1} [AlgebraInLean.Group G] (a : G) (b : G) (c : G) (h : AlgebraInLean.μ a b = AlgebraInLean.μ a c) :
b = c
def AlgebraInLean.Homomorphism {G : Type u_1} {H : Type u_2} [AlgebraInLean.Group G] [AlgebraInLean.Group H] (φ : GH) :
Equations
Instances For
    theorem AlgebraInLean.Homomorphism_def {G : Type u_1} {H : Type u_2} [AlgebraInLean.Group G] [AlgebraInLean.Group H] (φ : GH) :
    AlgebraInLean.Homomorphism φ ∀ (a b : G), AlgebraInLean.μ (φ a) (φ b) = φ (AlgebraInLean.μ a b)
    theorem AlgebraInLean.hom_id_to_id {G : Type u_1} {H : Type u_2} [AlgebraInLean.Group G] [AlgebraInLean.Group H] (φ : GH) (hp : AlgebraInLean.Homomorphism φ) :
    φ AlgebraInLean.𝕖 = AlgebraInLean.𝕖
    theorem AlgebraInLean.two_sided_inv {G : Type u_1} [AlgebraInLean.Group G] (a : G) (b : G) (h1 : AlgebraInLean.μ a b = AlgebraInLean.𝕖) :